Relating Winter Weather to Societal Impact

Brian Cerruti

PURPOSE: Method For Generating Impact Forecasts

- PHASE ONE: Local Winter Storm
 Scale (LWSS) → Create winter storm climatology for historical perspective.
- PHASE TWO: Rooney Disruption
 Index (RDI) → Provide a quantitative link between meteorology and societal impact.

WHY WINTER STORMS?

"Winter storms paralyze cities and regions for days and cost billions of dollars in cleanup and lost productivity..."

-NWS Strategic Plan 2020

...Introduction to Disruption

- Intrinsic Disruption: Pure meteorology, the potential for an event to cause societal disruption.
 - Saffir-Simpson Scale (1974)
- <u>Societal Susceptibility</u>: How vulnerable society is to a phenomenon (winter storms).
 - Scharfenberg (2011)
- Realized Disruption: Actual resulting socioeconomic impact.

Intrinsic Disruption + Societal Susceptibility = Realized Disruption.

Rooney (1967)

National Weather Service Strategic Plan 2020 Focus: Impact-based Decision Support Services

- Better understand the impact forecasts have on society → focus NWS resources
 - Provide decision assistance to core partners (FAA, DOT) during *High Impact Events*
- *High Impact Event* = A meteorological event that causes realized disruption.
 - Examples: Squall line, blizzard, light freezing rain at rush hour

The Winter Storm Problem

- Precipitation Type and Amount
- Wind (during and after event)
- Temperature (during and after event)
- Timing is everything
 - Wed. Jan 26, 2011 evening "commute"
 - Event revealed society can still be caught by surprise
 Need tool to communicate details.

PHASE ONE: Local Winter Storm Scale

- LWSS (pronounced "Lewis")
- Developed with Dr. Steven G. Decker (Rutgers)
- Measures intrinsic disruption (METEOROLOGY ONLY) at a single location
- Uses METARs and storm spotter data as input
- Represent complex situation with single value
- GOAL → Provide a winter storm climatology for placing storms into historical perspective → Allows for comparison of events separated by time and/or space

STORM ELEMENTS

Sustained	Wind	Storm Total	Storm Total	Minimum
Wind	Gust	Snowfall	Icing	Visibility
[kt]	[kt]	[in]	[in]	[mi]

BIN VALUE / LWSS CATEGORY

Storm Element Value (descriptor)

0
(Nuisance)
1
(Minimal)
2
(Substantial)
3
(Major)
4
(Major)
5
(Extreme)
6*
(Extreme)

^{*} Last bin is for extrapolation of extreme values

STORM ELEMENTS

Storm Element	Sustained	Wind	Storm Total	Storm Total	Minimum
Value	Wind	Gust	Snowfall	Icing	Visibility
(descriptor)	[kt]	[kt]	[in]	[in]	[mi]

	0 (Nuisance)	0	0	0	none	10
	1 (Minimal)	7	13	2	Т	3
	2 (Substantial)	11	17	4	0.1	1
	3 (Major)	17	22	10	0.25	0.5
	4 (Major)	22	30	15	0.5	0.25
	5 (Extreme)	27	41	20	0.75	0.125
_	6* (Extreme)	34	48	25	1.0	0

NOTE: Values shown are Lowest value for each Bin, except for Visibility

STORM ELEMENTS

Storm Element Value (descriptor)	Sustained Wind [kt]	Wind Gust [kt]	Storm Total Snowfall [in]	Storm Total Icing [in]	Minimum Visibility [mi]
Weighting Factor	20%	15%	50%	30%	15%
0 (Nuisance)	0	0	0	none	10
1 (Minimal)	7	13	2	Т	3
2 (Substantial)	11	17	4	0.1	1
3 (Major)	17	22	10	0.25	0.5
4 (Major)	22	30	15	0.5	0.25
5 (Extreme)	27	41	20	0.75	0.125
6* (Extreme)	34	48	25	1.0	0

NOTE: Values shown are Lowest value for each Bin, except for Visibility

PHASE ONE: Local Winter Storm Scale

METHOD DESCRIPTION

- 1.) For a single station, analyze all METARs over the period of time when precipitation is falling, drifting, or blowing.
- 2.) Obtain the **Storm Elements** by noting the maximum sustained wind speed, wind gust, and minimum visibility during this period and obtain storm total snowfall and icing data for the same location.
- 3.) Place **Storm Elements** into the appropriate BIN and interpolate to calculate the **Storm Element Scores**.
- 4.) Multiply the **Storm Element Score** by the appropriate **Weighting Factor** and sum to obtain the **LWSS** score.

PHASE ONE: LWSS Examples

Storm Element	Observation	SES	SES x WF
Sus. Wind	17 kts	3.00	0.600
Wind Gust	23 kts	3.11	0.467
Snowfall	2.9 in.	1.45	0.725
Icing	none	0.00	0.000
Visibility	0.5 mi.	3.00	0.450

LWSS = 2.242 (Substantial Disruption)

1/19/2002 - 1/20/02 KEWR

Storm Element	Observation	SES	SES x WF
Sus. Wind	23 kts	4.20	0.840
Wind Gust	35 kts	4.46	0.669
Snowfall	19.5 in.	4.90	2.450
Icing	0.18 in.	2.53	0.759
Visibility	0.25 mi.	4.00	0.600

2/9/2010 – 2/11/2010 KBWI

/9/2010 – 2/11/2010 KBWI SNOWMAGEDDON

LWSS = 5.305 (Extreme Disruption)

LWSS Category Value					
0 1 2 3 4 5					
(Nuisance)	(Minimal)	(Substantial)	(Major)	(Major)	(Extreme)

PHASE ONE: LWSS - Highlights

- Measures **POTENTIAL** for winter storms to deliver societal impact (*intrinsic disruption*)
 - Meteorology Only
 - Similar to Saffir-Simpson scale
- Weighting Factor sums to 1.30 to reward ice storms; no icing = sums to 1.00
- A unique value exists for every point
 - Spatial variability for each storm!
 - → Complements NESIS
- Does NOT account for Realized Disruption

PHASE TWO: Realized Disruption Scale

- Rooney Disruption Index (RDI) Derived from Rooney (1967)
- Measures realized disruption for
 - HighwaysManufacturingPower Outages
 - Local Roads School Operations Airways
 - Railways Public Functions Retail
- GOALS → 1.) Provide climatology of socioeconomic impact for historical perspective
 - 2.) Build regression relationship with LWSS values for forecasting of RDI.

PHASE TWO, Goal 1.): Rooney Disruption Index

METHODOLOGY

- 1.) Identify events where LWSS is calculated.
- Collect all relevant socioeconomic impact data for each event and categorize using RDI Rubric.

PHASE TWO, Goal 2.): LWSS/ RDI Relationship

METHODOLOGY

- 1.) Perform regression using LWSS values to predict the RDI values
- 2.) Reveal societal susceptibilities by investigating the relationship under differing circumstances.

PHASE TWO, GOAL 2.): LWSS and RDI Relationship Study Example

- Study at single location
 - (Newark, NJ; KEWR)
 - Isolate variations in societal susceptibility
- 15 cold seasons (10/1/1995 3/31/2010)
- Resulted in database of 309 events
 - Apply LWSS and RDI to each
 - OMIT STORMS WITH NO PRESS MENTION (RDI = 0)
 - Results in database of 136 events
 - Investigate relationship...

As intrinsic disruption increases, societal impact increases

(NOTE: RDI=0 cases omitted)

FIG. 2. Scatterplot of LWSS and RDI values, including the linear best fit and its associated coefficient of determination (\mathbb{R}^2). Storms with no press mention (RDI = 0) are not included.

Relationship is not perfect

(→ Societal Susceptibility is present)

PHASE TWO, GOAL 2.): Summary of Analysis

- 'MAJOR' winter storms always had an impact
 - When LWSS > 3, RDI > 0
- Storms occurring on non-holiday weekdays (weekends/ holidays) have more (less) realized disruption.
- Storms occurring < 2 days after the previous event have more realized disruption.
- Storms occurring outside of the 'peak season' display a weaker LWSS/ RDI relationship.
 - Non-LWSS factors have more influence
- Can now provide Impact forecasts directly...

POSSIBLE TEXT PRODUCTS

Assume expected LWSS value of 4.0...

Societal Element	ASSUME: Storm occurs in peak season RDI = 2.0	ASSUME: Storm occurs in mid October on a weekday RDI = 3.0
Roadways	Increased accidents, traffic slowed, speed restrictions on highways	Increased accidents, traffic stopped, some stranded vehicles
Railways	Rail delays up to four hours	Rail delays up to twelve hours
Airports	Light flight cancellations	Several flight cancellations
Schools	Closing of some suburban schools, minor attendance drops for urban schools	Closing of most suburban schools, major attendance drops for urban schools
Electrical Utility Operations	Widespread brief power interruptions	Widespread power outages

Case Study (2/9/2010- 2/11/2010)

a.k.a. SNOWMAGEDDON

- Compare Intrinsic Disruption
 (LWSS) and Realized Disruption (RDI)
 relationship to KEWR climatology
- Investigate spatial relationship between Intrinsic Disruption (LWSS) and Realized Disruption (RDI)

Snowmageddon relative to KEWR climatology

FIG. 8. Scatterplot of LWSS and RDI values at various locations affected by the 9–11 February 2010 winter storm. The best-fit line from Fig. 2 is also included, as are lines representing one (dashed) and two (dotted) standard errors above and below the best-fit line.

Snowmageddon Intrinsic Disruption (LWSS) and Realized Disruption (RDI) Spatial Comparison

REMEMBER: ONLY CALIBRATED FOR KEWR!!!!

Conclusions

- LWSS provides estimate of intrinsic disruption (meteorology) for a single location
- RDI provides estimate for realized disruption (socioeconomic impact) for a single location
- A relationship between LWSS and RDI can be exploited to create Impact Based forecasts
- New calibration is needed for each station
 - Allows for intricate localized knowledge of societal susceptibility

Future Work

- Development of LWSS/ RDI relationship for all locations where impact forecasts are desired
 - WFO Memphis, TN has agreed to carry out development for selected stations
 - (Any other interested WFOs, please contact me!)
- Develop Real-time LWSS to track intrinsic disruption
 - Aid in short term forecasts and decision making
 - Already in development and experimental form
 - Relate RT-LWSS to 'real time' Realized Disruption
 Data

THANK YOU FOR LISTENING

- Questions?
- Comments?
- Any interested WFOs out there?
 - brian.cerruti@noaa.gov

References

Cerruti, B. and S. G. Decker, 2011: The Local Winter Storm Scale: A measure of the intrinsic ability of winter storms to disrupt society. *Bulll. Amer. Meteor. Soc.* **Early Online Release**.

Dolan, R., and R. E. Davis, 1992: An intensity scale for Atlantic coast northeast storms. J. Coastal Res., 8, 352–364.

Johnson, D.L., 2006: NOAA's National Weather Service: Future in the Digital Age.

Kocin, P. J., and L. W. Uccellini, 2004: A snowfall impact scale derived from Northeast storm snowfall distributions. *Bull. Amer. Meteor. Soc.*, **85**, **177–194**.

NOAA's National Weather Service Strategic Plan 2011-2020: Draft for Public Comment.

Rooney, J. F., Jr., 1967: The urban snow hazard in the United States: An appraisal of disruption. *Geogr. Rev.,* 57, 538–559.

Sharfenberg, K. A., K. L. Manross, K. L. Ortega, and B. P. Walawender, 2011: Real-time estimation of population exposure to weather hazards. 24th Conf. on Weather And Forecasting and 20th Conf. on Numerical Weather Prediction, Seattle, WA.

Simpson, R. H., and H. Saffir, 1974: The hurricane disaster-potential scale. Weatherwise, 27, 169.

Stern, A., 2010: 2010 Clarus/ MDSS Stakeholder Meeting

Zielinski, G. A., 2002: A classification scheme for winter storms in the eastern and central United States with an emphasis on "Nor'Easters." *Bull. Amer. Meteor. Soc.*, *83*, *37–51*.